Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Young's modulus
Mechanical property that measures stiffness of a solid material

Young's modulus is a mechanical property that measures the tensile or compressive stiffness of solid materials when force is applied lengthwise. It represents the modulus of elasticity for axial tension or compression, defined as the ratio of stress to resulting axial strain within the linear elastic region. Although named after 19th-century scientist Thomas Young, the concept originated with Leonhard Euler in 1727, and was experimentally developed by Giordano Riccati in 1782. The term modulus comes from the Latin root modus, meaning measure.

Related Image Collections Add Image
We don't have any YouTube videos related to Young's modulus yet.
We don't have any PDF documents related to Young's modulus yet.
We don't have any Books related to Young's modulus yet.
We don't have any archived web articles related to Young's modulus yet.

Definition

Young's modulus, E {\displaystyle E} , quantifies the relationship between tensile or compressive stress σ {\displaystyle \sigma } (force per unit area) and axial strain ε {\displaystyle \varepsilon } (proportional deformation) in the linear elastic region of a material:2 E = σ ε {\displaystyle E={\frac {\sigma }{\varepsilon }}}

Young's modulus is commonly measured in the International System of Units (SI) in multiples of the pascal (Pa) and common values are in the range of gigapascals (GPa).

Examples:

  • Rubber (increasing pressure: large length increase, meaning low E {\displaystyle E} )
  • Aluminium (increasing pressure: small length increase, meaning high E {\displaystyle E} )

Linear elasticity

Main article: Linear elasticity

A solid material undergoes elastic deformation when a small load is applied to it in compression or extension. Elastic deformation is reversible, meaning that the material returns to its original shape after the load is removed.

At near-zero stress and strain, the stress–strain curve is linear, and the relationship between stress and strain is described by Hooke's law that states stress is proportional to strain. The coefficient of proportionality is Young's modulus. The higher the modulus, the more stress is needed to create the same amount of strain; an idealized rigid body would have an infinite Young's modulus. Conversely, a very soft material (such as a fluid) would deform without force, and would have zero Young's modulus.

Related but distinct properties

Material stiffness is a distinct property from the following:

  • Strength: maximum amount of stress that material can withstand while staying in the elastic (reversible) deformation regime;
  • Geometric stiffness: a global characteristic of the body that depends on its shape, and not only on the local properties of the material; for instance, an I-beam has a higher bending stiffness than a rod of the same material for a given mass per length;
  • Hardness: relative resistance of the material's surface to penetration by a harder body;
  • Toughness: amount of energy that a material can absorb before fracture.
  • The point E is the elastic limit or the yield point of the material within which the stress is proportional to strain and the material regains its original shape after removal of the external force.

Usage

Young's modulus enables the calculation of the change in the dimension of a bar made of an isotropic elastic material under tensile or compressive loads. For instance, it predicts how much a material sample extends under tension or shortens under compression. The Young's modulus directly applies to cases of uniaxial stress; that is, tensile or compressive stress in one direction and no stress in the other directions. Young's modulus is also used in order to predict the deflection that will occur in a statically determinate beam when a load is applied at a point in between the beam's supports.

Other elastic calculations usually require the use of one additional elastic property, such as the shear modulus G {\displaystyle G} , bulk modulus K {\displaystyle K} , and Poisson's ratio ν {\displaystyle \nu } . Any two of these parameters are sufficient to fully describe elasticity in an isotropic material. For example, calculating physical properties of cancerous skin tissue, has been measured and found to be a Poisson’s ratio of 0.43±0.12 and an average Young’s modulus of 52 KPa. Defining the elastic properties of skin may become the first step in turning elasticity into a clinical tool.3 For homogeneous isotropic materials simple relations exist between elastic constants that allow calculating them all as long as two are known:

E = 2 G ( 1 + ν ) = 3 K ( 1 − 2 ν ) . {\displaystyle E=2G(1+\nu )=3K(1-2\nu ).}

Linear versus non-linear

Young's modulus represents the factor of proportionality in Hooke's law, which relates the stress and the strain. However, Hooke's law is only valid under the assumption of an elastic and linear response. Any real material will eventually fail and break when stretched over a very large distance or with a very large force; however, all solid materials exhibit nearly Hookean behavior for small enough strains or stresses. If the range over which Hooke's law is valid is large enough compared to the typical stress that one expects to apply to the material, the material is said to be linear. Otherwise (if the typical stress one would apply is outside the linear range), the material is said to be non-linear.

Steel, carbon fiber and glass among others are usually considered linear materials, while other materials such as rubber and soils are non-linear. However, this is not an absolute classification: if very small stresses or strains are applied to a non-linear material, the response will be linear, but if very high stress or strain is applied to a linear material, the linear theory will not be enough. For example, as the linear theory implies reversibility, it would be absurd to use the linear theory to describe the failure of a steel bridge under a high load; although steel is a linear material for most applications, it is not in such a case of catastrophic failure.

In solid mechanics, the slope of the stress–strain curve at any point is called the tangent modulus. It can be experimentally determined from the slope of a stress–strain curve created during tensile tests conducted on a sample of the material.

Directional materials

Young's modulus is not always the same in all orientations of a material. Most metals and ceramics, along with many other materials, are isotropic, and their mechanical properties are the same in all orientations. However, metals and ceramics can be treated with certain impurities, and metals can be mechanically worked to make their grain structures directional. These materials then become anisotropic, and Young's modulus will change depending on the direction of the force vector.4 Anisotropy can be seen in many composites as well. For example, carbon fiber has a much higher Young's modulus (is much stiffer) when force is loaded parallel to the fibers (along the grain). Other such materials include wood and reinforced concrete. Engineers can use this directional phenomenon to their advantage in creating structures.

Calculation

Young's modulus is calculated by dividing the tensile stress, σ ( ε ) {\displaystyle \sigma (\varepsilon )} , by the engineering extensional strain, ε {\displaystyle \varepsilon } , in the elastic (initial, linear) portion of the physical stress–strain curve:

E ≡ σ ( ε ) ε = F / A Δ L / L 0 = F L 0 A Δ L {\displaystyle E\equiv {\frac {\sigma (\varepsilon )}{\varepsilon }}={\frac {F/A}{\Delta L/L_{0}}}={\frac {FL_{0}}{A\,\Delta L}}} where

  • E {\displaystyle E} is the Young's modulus (modulus of elasticity);
  • F {\displaystyle F} is the force exerted on an object under tension;
  • A {\displaystyle A} is the actual cross-sectional area, which equals the area of the cross-section perpendicular to the applied force;
  • Δ L {\displaystyle \Delta L} is the amount by which the length of the object changes ( Δ L {\displaystyle \Delta L} is positive if the material is stretched, and negative when the material is compressed);
  • L 0 {\displaystyle L_{0}} is the original length of the object.

Force exerted by stretched or contracted material

Young's modulus of a material can be used to calculate the force it exerts under specific strain.

F = E A Δ L L 0 {\displaystyle F={\frac {EA\,\Delta L}{L_{0}}}}

where F {\displaystyle F} is the force exerted by the material when contracted or stretched by Δ L {\displaystyle \Delta L} .

Hooke's law for a stretched wire can be derived from this formula:

F = ( E A L 0 ) Δ L = k x {\displaystyle F=\left({\frac {EA}{L_{0}}}\right)\,\Delta L=kx}

where it comes in saturation

k ≡ E A L 0 {\displaystyle k\equiv {\frac {EA}{L_{0}}}\,} and x ≡ Δ L . {\displaystyle x\equiv \Delta L.}

Note that the elasticity of coiled springs comes from shear modulus, not Young's modulus. When a spring is stretched, its wire's length doesn't change, but its shape does. This is why only the shear modulus of elasticity is involved in the stretching of a spring.

Elastic potential energy

The elastic potential energy stored in a linear elastic material is given by the integral of the Hooke's law:

U e = ∫ k x d x = 1 2 k x 2 . {\displaystyle U_{e}=\int {kx}\,dx={\frac {1}{2}}kx^{2}.}

now by explicating the intensive variables:

U e = ∫ E A Δ L L 0 d Δ L = E A L 0 ∫ Δ L d Δ L = E A Δ L 2 2 L 0 {\displaystyle U_{e}=\int {\frac {EA\,\Delta L}{L_{0}}}\,d\Delta L={\frac {EA}{L_{0}}}\int \Delta L\,d\Delta L={\frac {EA\,{\Delta L}^{2}}{2L_{0}}}}

This means that the elastic potential energy density (that is, per unit volume) is given by:

U e A L 0 = E Δ L 2 2 L 0 2 = 1 2 × E Δ L L 0 × Δ L L 0 = 1 2 × σ ( ε ) × ε {\displaystyle {\frac {U_{e}}{AL_{0}}}={\frac {E\,{\Delta L}^{2}}{2L_{0}^{2}}}={\frac {1}{2}}\times {\frac {E\,{\Delta L}}{L_{0}}}\times {\frac {\Delta L}{L_{0}}}={\frac {1}{2}}\times \sigma (\varepsilon )\times \varepsilon }

or, in simple notation, for a linear elastic material: u e ( ε ) = ∫ E ε d ε = 1 2 E ε 2 {\textstyle u_{e}(\varepsilon )=\int {E\,\varepsilon }\,d\varepsilon ={\frac {1}{2}}E{\varepsilon }^{2}} , since the strain is defined ε ≡ Δ L L 0 {\textstyle \varepsilon \equiv {\frac {\Delta L}{L_{0}}}} .

In a nonlinear elastic material the Young's modulus is a function of the strain, so the second equivalence no longer holds, and the elastic energy is not a quadratic function of the strain:

u e ( ε ) = ∫ E ( ε ) ε d ε ≠ 1 2 E ε 2 {\displaystyle u_{e}(\varepsilon )=\int E(\varepsilon )\,\varepsilon \,d\varepsilon \neq {\frac {1}{2}}E\varepsilon ^{2}}

Examples

Young's modulus can vary somewhat due to differences in sample composition and test method. The rate of deformation has the greatest impact on the data collected, especially in polymers. The values here are approximate and only meant for relative comparison.

Approximate Young's modulus for various materials
MaterialYoung's modulus (GPa)Megapound per square inch (Mpsi)5Ref.
Aluminium (13Al)689.8667891011
Amino-acid molecular crystals21–443.05–6.3812
Aramid (for example, Kevlar)70.5–112.410.2–16.313
Aromatic peptide-nanospheres230–27533.4–39.914
Aromatic peptide-nanotubes19–272.76–3.921516
Bacteriophage capsids1–30.145–0.43517
Beryllium (4Be)28741.618
Bone, human cortical142.0319
Brass10615.420
Bronze11216.221
Carbon nitride (CN2)82211922
Carbon-fiber-reinforced plastic (CFRP), 50/50 fibre/matrix, biaxial fabric30–504.35–7.2523
Carbon-fiber-reinforced plastic (CFRP), 70/30 fibre/matrix, unidirectional, along fibre18126.324
Cobalt-chrome (CoCr)23033.425
Copper (Cu), annealed1101626
Diamond (C), synthetic1050–1210152–17527
Diatom frustules, largely silicic acid0.35–2.770.051–0.05828
Flax fiber588.4129
Float glass47.7–83.66.92–12.130
Glass-reinforced polyester (GRP)17.22.4931
Gold77.211.232
Graphene105015233
Hemp fiber355.0834
High-density polyethylene (HDPE)0.97–1.380.141–0.235
High-strength concrete304.3536
Lead (82Pb), chemical131.8937
Low-density polyethylene (LDPE), molded0.2280.033138
Magnesium alloy45.26.5639
Medium-density fiberboard (MDF)40.5840
Molybdenum (Mo), annealed33047.9414243444546
Monel18026.147
Mother-of-pearl (largely calcium carbonate)7010.248
Nickel (28Ni), commercial2002949
Nylon 662.930.42550
Osmium (76Os)525–56276.1–81.551
Osmium nitride (OsN2)194.99–396.4428.3–57.552
Polycarbonate (PC)2.20.31953
Polyethylene terephthalate (PET), unreinforced3.140.45554
Polypropylene (PP), molded1.680.24455
Polystyrene, crystal2.5–3.50.363–0.50856
Polystyrene, foam0.0025–0.0070.000363–0.0010257
Polytetrafluoroethylene (PTFE), molded0.5640.081858
Rubber, small strain0.01–0.10.00145–0.014559
Silicon, single crystal, different directions130–18518.9–26.860
Silicon carbide (SiC)90–13713.1–19.961
Single-walled carbon nanotube > {\displaystyle >} 1000 > {\displaystyle >} 1406263
Steel, A362002964
Stinging nettle fiber8712.665
Titanium (22Ti)11616.866676869707172
Titanium alloy, Grade 511416.573
Tooth enamel, largely calcium phosphate831274
Tungsten carbide (WC)600–68687–99.575
Wood, American beech9.5–11.91.38–1.7376
Wood, black cherry9–10.31.31–1.4977
Wood, red maple9.6–11.31.39–1.6478
Wrought iron1932879
Yttrium iron garnet (YIG), polycrystalline1932880
Yttrium iron garnet (YIG), single-crystal2002981
Zinc (30Zn)10815.782
Zirconium (40Zr), commercial9513.883

See also

Further reading

Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulae K = {\displaystyle K=\,} E = {\displaystyle E=\,} λ = {\displaystyle \lambda =\,} G = {\displaystyle G=\,} ν = {\displaystyle \nu =\,} M = {\displaystyle M=\,} Notes
( K , E ) {\displaystyle (K,\,E)} 3 K ( 3 K − E ) 9 K − E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}} 3 K E 9 K − E {\displaystyle {\tfrac {3KE}{9K-E}}} 3 K − E 6 K {\displaystyle {\tfrac {3K-E}{6K}}} 3 K ( 3 K + E ) 9 K − E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}
( K , λ ) {\displaystyle (K,\,\lambda )} 9 K ( K − λ ) 3 K − λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}} 3 ( K − λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}} λ 3 K − λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}} 3 K − 2 λ {\displaystyle 3K-2\lambda \,}
( K , G ) {\displaystyle (K,\,G)} 9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}} K − 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}} 3 K − 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}} K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}}
( K , ν ) {\displaystyle (K,\,\nu )} 3 K ( 1 − 2 ν ) {\displaystyle 3K(1-2\nu )\,} 3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}} 3 K ( 1 − 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}} 3 K ( 1 − ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}
( K , M ) {\displaystyle (K,\,M)} 9 K ( M − K ) 3 K + M {\displaystyle {\tfrac {9K(M-K)}{3K+M}}} 3 K − M 2 {\displaystyle {\tfrac {3K-M}{2}}} 3 ( M − K ) 4 {\displaystyle {\tfrac {3(M-K)}{4}}} 3 K − M 3 K + M {\displaystyle {\tfrac {3K-M}{3K+M}}}
( E , λ ) {\displaystyle (E,\,\lambda )} E + 3 λ + R 6 {\displaystyle {\tfrac {E+3\lambda +R}{6}}} E − 3 λ + R 4 {\displaystyle {\tfrac {E-3\lambda +R}{4}}} 2 λ E + λ + R {\displaystyle {\tfrac {2\lambda }{E+\lambda +R}}} E − λ + R 2 {\displaystyle {\tfrac {E-\lambda +R}{2}}} R = E 2 + 9 λ 2 + 2 E λ {\displaystyle R={\sqrt {E^{2}+9\lambda ^{2}+2E\lambda }}}
( E , G ) {\displaystyle (E,\,G)} E G 3 ( 3 G − E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}} G ( E − 2 G ) 3 G − E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}} E 2 G − 1 {\displaystyle {\tfrac {E}{2G}}-1} G ( 4 G − E ) 3 G − E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}}
( E , ν ) {\displaystyle (E,\,\nu )} E 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}} E ν ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}} E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}} E ( 1 − ν ) ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}
( E , M ) {\displaystyle (E,\,M)} 3 M − E + S 6 {\displaystyle {\tfrac {3M-E+S}{6}}} M − E + S 4 {\displaystyle {\tfrac {M-E+S}{4}}} 3 M + E − S 8 {\displaystyle {\tfrac {3M+E-S}{8}}} E − M + S 4 M {\displaystyle {\tfrac {E-M+S}{4M}}} S = ± E 2 + 9 M 2 − 10 E M {\displaystyle S=\pm {\sqrt {E^{2}+9M^{2}-10EM}}}

There are two valid solutions. The plus sign leads to ν ≥ 0 {\displaystyle \nu \geq 0} .

The minus sign leads to ν ≤ 0 {\displaystyle \nu \leq 0} .
( λ , G ) {\displaystyle (\lambda ,\,G)} λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}} G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}} λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}} λ + 2 G {\displaystyle \lambda +2G\,}
( λ , ν ) {\displaystyle (\lambda ,\,\nu )} λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}} λ ( 1 + ν ) ( 1 − 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}} λ ( 1 − 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}} λ ( 1 − ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}} Cannot be used when ν = 0 ⇔ λ = 0 {\displaystyle \nu =0\Leftrightarrow \lambda =0}
( λ , M ) {\displaystyle (\lambda ,\,M)} M + 2 λ 3 {\displaystyle {\tfrac {M+2\lambda }{3}}} ( M − λ ) ( M + 2 λ ) M + λ {\displaystyle {\tfrac {(M-\lambda )(M+2\lambda )}{M+\lambda }}} M − λ 2 {\displaystyle {\tfrac {M-\lambda }{2}}} λ M + λ {\displaystyle {\tfrac {\lambda }{M+\lambda }}}
( G , ν ) {\displaystyle (G,\,\nu )} 2 G ( 1 + ν ) 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}} 2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,} 2 G ν 1 − 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}} 2 G ( 1 − ν ) 1 − 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}
( G , M ) {\displaystyle (G,\,M)} M − 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}} G ( 3 M − 4 G ) M − G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}} M − 2 G {\displaystyle M-2G\,} M − 2 G 2 M − 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}}
( ν , M ) {\displaystyle (\nu ,\,M)} M ( 1 + ν ) 3 ( 1 − ν ) {\displaystyle {\tfrac {M(1+\nu )}{3(1-\nu )}}} M ( 1 + ν ) ( 1 − 2 ν ) 1 − ν {\displaystyle {\tfrac {M(1+\nu )(1-2\nu )}{1-\nu }}} M ν 1 − ν {\displaystyle {\tfrac {M\nu }{1-\nu }}} M ( 1 − 2 ν ) 2 ( 1 − ν ) {\displaystyle {\tfrac {M(1-2\nu )}{2(1-\nu )}}}
2D formulae K 2 D = {\displaystyle K_{\mathrm {2D} }=\,} E 2 D = {\displaystyle E_{\mathrm {2D} }=\,} λ 2 D = {\displaystyle \lambda _{\mathrm {2D} }=\,} G 2 D = {\displaystyle G_{\mathrm {2D} }=\,} ν 2 D = {\displaystyle \nu _{\mathrm {2D} }=\,} M 2 D = {\displaystyle M_{\mathrm {2D} }=\,} Notes
( K 2 D , E 2 D ) {\displaystyle (K_{\mathrm {2D} },\,E_{\mathrm {2D} })} 2 K 2 D ( 2 K 2 D − E 2 D ) 4 K 2 D − E 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} K 2 D E 2 D 4 K 2 D − E 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}} 2 K 2 D − E 2 D 2 K 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}} 4 K 2 D 2 4 K 2 D − E 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
( K 2 D , λ 2 D ) {\displaystyle (K_{\mathrm {2D} },\,\lambda _{\mathrm {2D} })} 4 K 2 D ( K 2 D − λ 2 D ) 2 K 2 D − λ 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} K 2 D − λ 2 D {\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }} λ 2 D 2 K 2 D − λ 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}} 2 K 2 D − λ 2 D {\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}
( K 2 D , G 2 D ) {\displaystyle (K_{\mathrm {2D} },\,G_{\mathrm {2D} })} 4 K 2 D G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} K 2 D − G 2 D {\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }} K 2 D − G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}} K 2 D + G 2 D {\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}
( K 2 D , ν 2 D ) {\displaystyle (K_{\mathrm {2D} },\,\nu _{\mathrm {2D} })} 2 K 2 D ( 1 − ν 2 D ) {\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })\,} 2 K 2 D ν 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}} K 2 D ( 1 − ν 2 D ) 1 + ν 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}} 2 K 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}
( E 2 D , G 2 D ) {\displaystyle (E_{\mathrm {2D} },\,G_{\mathrm {2D} })} E 2 D G 2 D 4 G 2 D − E 2 D {\displaystyle {\tfrac {E_{\mathrm {2D} }G_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} 2 G 2 D ( E 2 D − 2 G 2 D ) 4 G 2 D − E 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}} E 2 D 2 G 2 D − 1 {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1} 4 G 2 D 2 4 G 2 D − E 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
( E 2 D , ν 2 D ) {\displaystyle (E_{\mathrm {2D} },\,\nu _{\mathrm {2D} })} E 2 D 2 ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}} E 2 D ν 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}} E 2 D 2 ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}} E 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}
( λ 2 D , G 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\,G_{\mathrm {2D} })} λ 2 D + G 2 D {\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }} 4 G 2 D ( λ 2 D + G 2 D ) λ 2 D + 2 G 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} λ 2 D λ 2 D + 2 G 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}} λ 2 D + 2 G 2 D {\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }\,}
( λ 2 D , ν 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\,\nu _{\mathrm {2D} })} λ 2 D ( 1 + ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} λ 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}} λ 2 D ( 1 − ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}} λ 2 D ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}} Cannot be used when ν 2 D = 0 ⇔ λ 2 D = 0 {\displaystyle \nu _{\mathrm {2D} }=0\Leftrightarrow \lambda _{\mathrm {2D} }=0}
( G 2 D , ν 2 D ) {\displaystyle (G_{\mathrm {2D} },\,\nu _{\mathrm {2D} })} G 2 D ( 1 + ν 2 D ) 1 − ν 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}} 2 G 2 D ( 1 + ν 2 D ) {\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,} 2 G 2 D ν 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}} 2 G 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}
( G 2 D , M 2 D ) {\displaystyle (G_{\mathrm {2D} },\,M_{\mathrm {2D} })} M 2 D − G 2 D {\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }} 4 G 2 D ( M 2 D − G 2 D ) M 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}} M 2 D − 2 G 2 D {\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }\,} M 2 D − 2 G 2 D M 2 D {\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}

References

  1. The Rational mechanics of Flexible or Elastic Bodies, 1638–1788: Introduction to Leonhardi Euleri Opera Omnia, vol. X and XI, Seriei Secundae. Orell Fussli.

  2. Jastrzebski, D. (1959). Nature and Properties of Engineering Materials (Wiley International ed.). John Wiley & Sons, Inc. /wiki/John_Wiley_%26_Sons,_Inc

  3. Tilleman, Tamara Raveh; Tilleman, Michael M.; Neumann, Martino H.A. (December 2004). "The Elastic Properties of Cancerous Skin: Poisson's Ratio and Young's Modulus" (PDF). Israel Medical Association Journal. 6 (12): 753–755. PMID 15609889. https://www.ima.org.il/FilesUploadPublic/IMAJ/0/52/26480.pdf

  4. Gorodtsov, V.A.; Lisovenko, D.S. (2019). "Extreme values of Young's modulus and Poisson's ratio of hexagonal crystals". Mechanics of Materials. 134: 1–8. Bibcode:2019MechM.134....1G. doi:10.1016/j.mechmat.2019.03.017. S2CID 140493258. /wiki/Bibcode_(identifier)

  5. "Unit of Measure Converter". MatWeb. Retrieved May 9, 2021. http://www.matweb.com/tools/unitconverter.aspx

  6. "Aluminum, Al". MatWeb. Retrieved May 7, 2021. http://www.matweb.com/search/DataSheet.aspx?MatGUID=0cd1edf33ac145ee93a0aa6fc666c0e0

  7. Weast, Robert C. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. doi:10.1002/jctb.280500215. ISBN 978-0-84-930740-9. 978-0-84-930740-9

  8. Ross, Robert B. (1992). Metallic Materials Specification Handbook (4th ed.). London: Chapman & Hall. doi:10.1007/978-1-4615-3482-2. ISBN 9780412369407. 9780412369407

  9. Nunes, Rafael; Adams, J. H.; Ammons, Mitchell; et al. (1990). Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (PDF). ASM Handbook (10th ed.). ASM International. ISBN 978-0-87170-378-1. 978-0-87170-378-1

  10. Nayar, Alok (1997). The Metals Databook. New York, NY: McGraw-Hill. ISBN 978-0-07-462300-8. 978-0-07-462300-8

  11. Lide, David R., ed. (1999). "Commercial Metals and Alloys". CRC Handbook of Chemistry and Physics (80th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-84-930480-4. 978-0-84-930480-4

  12. Azuri, Ido; Meirzadeh, Elena; Ehre, David; et al. (November 9, 2015). "Unusually Large Young's Moduli of Amino Acid Molecular Crystals" (PDF). Angewandte Chemie. 54 (46) (International ed.). Wiley: 13566–13570. doi:10.1002/anie.201505813. PMID 26373817. S2CID 13717077 – via PubMed. http://www.sas.upenn.edu/rappegroup/publications/Papers/Azuri15p13566.pdf

  13. "Kevlar Aramid Fiber Technical Guide" (PDF). DuPont. 2017. Retrieved May 8, 2021. https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf

  14. Adler-Abramovich, Lihi; Kol, Nitzan; Yanai, Inbal; et al. (December 17, 2010). "Self-Assembled Organic Nanostructures with Metallic-Like Stiffness". Angewandte Chemie. 49 (51) (International ed.). Wiley-VCH (published September 28, 2010): 9939–9942. doi:10.1002/anie.201002037. PMID 20878815. S2CID 44873277. /wiki/Wiley-VCH

  15. Kol, Nitzan; Adler-Abramovich, Lihi; Barlam, David; et al. (June 8, 2005). "Self-Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures". Nano Letters. 5 (7). Israel: American Chemical Society: 1343–1346. Bibcode:2005NanoL...5.1343K. doi:10.1021/nl0505896. PMID 16178235 – via ACS Publications. https://pubs.acs.org/doi/full/10.1021/nl0505896

  16. Niu, Lijiang; Chen, Xinyong; Allen, Stephanie; et al. (June 6, 2007). "Using the Bending Beam Model to Estimate the Elasticity of Diphenylalanine Nanotubes". Langmuir. 23 (14). American Chemical Society: 7443–7446. doi:10.1021/la7010106. PMID 17550276 – via ACS Publications. https://pubs.acs.org/doi/full/10.1021/la7010106

  17. Ivanovska, Irena L.; de Pablo, Pedro J.; Ibarra, Benjamin; et al. (May 7, 2004). Lubensky, Tom C. (ed.). "Bacteriophage capsids: Tough nanoshells with complex elastic properties". Proceedings of the National Academy of Sciences of the United States of America. 101 (20). The National Academy of Sciences: 7600–7605. Bibcode:2004PNAS..101.7600I. doi:10.1073/pnas.0308198101. PMC 419652. PMID 15133147. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC419652

  18. Foley, James C.; Abeln, Stephen P.; Stanek, Paul W.; et al. (2010). "An Overview of Current Research and Industrial Practices of be Powder Metallurgy". In Marquis, Fernand D. S. (ed.). Powder Materials: Current Research and Industrial Practices III. Hoboken, NJ: John Wiley & Sons, Inc. p. 263. doi:10.1002/9781118984239.ch32. ISBN 978-1-11-898423-9. 978-1-11-898423-9

  19. Rho, Jae Young; Ashman, Richard B.; Turner, Charles H. (February 1993). "Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements". Journal of Biomechanics. 26 (2). Elsevier: 111–119. doi:10.1016/0021-9290(93)90042-d. PMID 8429054 – via Elsevier Science Direct. https://www.sciencedirect.com/science/article/abs/pii/002192909390042D

  20. "Overview of materials for Brass". MatWeb. Retrieved May 7, 2021. http://www.matweb.com/search/DataSheet.aspx?MatGUID=d3bd4617903543ada92f4c101c2a20e5

  21. "Overview of materials for Bronze". MatWeb. Retrieved May 7, 2021. http://www.matweb.com/search/datasheet.aspx?MatGUID=66575ff2cd5249c49d76df15b47dbca4

  22. Chowdhury, Shafiul; Laugier, Michael T.; Rahman, Ismet Zakia (April–August 2004). "Measurement of the mechanical properties of carbon nitride thin films from the nanoindentation loading curve". Diamond and Related Materials. 13 (4–8): 1543–1548. Bibcode:2004DRM....13.1543C. doi:10.1016/j.diamond.2003.11.063 – via Elsevier Science Direct. /wiki/Diamond_and_Related_Materials

  23. Summerscales, John (September 11, 2019). "Composites Design and Manufacture (Plymouth University teaching support materials)". Advanced Composites Manufacturing Centre. University of Plymouth. Retrieved May 8, 2021. https://www.fose1.plymouth.ac.uk/sme/MATS347/MATS347A2%20E-G-nu.htm#E

  24. Kopeliovich, Dmitri (June 3, 2012). "Epoxy Matrix Composite reinforced by 70% carbon fibers". SubsTech. Retrieved May 8, 2021. http://www.substech.com/dokuwiki/doku.php?id=epoxy_matrix_composite_reinforced_by_70_carbon_fibers

  25. Bose, Susmita; Banerjee, Dishary; Bandyopadhyay, Amit (2016). "Introduction to Biomaterials and Devices for Bone Disorders". In Bose, Susmita; Bandyopadhyay, Amit (eds.). Materials for Bone Disorders. Academic Press. pp. 1–27. doi:10.1016/B978-0-12-802792-9.00001-X. ISBN 978-0-12-802792-9. 978-0-12-802792-9

  26. "Copper, Cu; Annealed". MatWeb. Retrieved May 9, 2021. http://www.matweb.com/search/DataSheet.aspx?MatGUID=9aebe83845c04c1db5126fada6f76f7e

  27. Spear, Karl E.; Dismukes, John P., eds. (1994). Synthetic Diamond: Emerging CVD Science and Technology. Wiley. p. 315. ISBN 978-0-47-153589-8. ISSN 0275-0171. 978-0-47-153589-8

  28. Subhash, Ghatu; Yao, Shuhuai; Bellinger, Brent; Gretz, Michael R. (January 2005). "Investigation of mechanical properties of diatom frustules using nanoindentation". Journal of Nanoscience and Nanotechnology. 5 (1). American Scientific Publishers: 50–56. doi:10.1166/jnn.2005.006. PMID 15762160 – via Ingenta Connect. /wiki/Journal_of_Nanoscience_and_Nanotechnology

  29. Bodros, Edwin; Baley, Christophe (May 15, 2008). "Study of the tensile properties of stinging nettle fibres (Urtica dioica)". Materials Letters. 62 (14): 2143–2145. Bibcode:2008MatL...62.2143B. CiteSeerX 10.1.1.299.6908. doi:10.1016/j.matlet.2007.11.034 – via Elsevier Science Direct. /wiki/Materials_Letters

  30. "Float glass – Properties and Applications". AZO Materials. February 16, 2001. Retrieved May 9, 2021. https://www.azom.com/properties.aspx?ArticleID=89

  31. Kopeliovich, Dmitri (March 6, 2012). "Polyester Matrix Composite reinforced by glass fibers (Fiberglass)". SubsTech. Retrieved May 7, 2021. http://www.substech.com/dokuwiki/doku.php?id=polyester_matrix_composite_reinforced_by_glass_fibers_fiberglass

  32. "Gold material property data". MatWeb. Retrieved September 8, 2021. http://www.matweb.com/search/DataSheet.aspx?MatGUID=d2a2119a08904a0fa706e9408cddb88e

  33. Liu, Fang; Ming, Pingbing; Li, Ju (August 28, 2007). "Ab initio calculation of ideal strength and phonon instability of graphene under tension" (PDF). Physical Review B. 76 (6). American Physical Society: 064120. Bibcode:2007PhRvB..76f4120L. doi:10.1103/PhysRevB.76.064120 – via APS Physics. http://li.mit.edu/A/Papers/07/Liu07.pdf

  34. Saheb, Nabi; Jog, Jyoti (October 15, 1999). "Natural fibre polymer composites: a review". Advances in Polymer Technology. 18 (4). John Wiley & Sons, Inc.: 351–363. doi:10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X. https://doi.org/10.1002%2F%28SICI%291098-2329%28199924%2918%3A4%3C351%3A%3AAID-ADV6%3E3.0.CO%3B2-X

  35. "High-Density Polyethylene (HDPE)". Polymer Database. Chemical Retrieval on the Web. Retrieved May 9, 2021. https://polymerdatabase.com/Commercial%20Polymers/HDPE.html

  36. Cardarelli, François (2008). "Cements, Concrete, Building Stones, and Construction Materials". Materials Handbook: A Concise Desktop Reference (2nd ed.). London: Springer-Verlag. pp. 1421–1439. doi:10.1007/978-3-319-38925-7_15. ISBN 978-3-319-38923-3. 978-3-319-38923-3

  37. Lide, David R., ed. (1999). "Commercial Metals and Alloys". CRC Handbook of Chemistry and Physics (80th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-84-930480-4. 978-0-84-930480-4

  38. "Overview of materials for Low Density Polyethylene (LDPE), Molded". MatWeb. Retrieved May 7, 2021. http://matweb.com/search/DataSheet.aspx?MatGUID=557b96c10e0843dbb1e830ceedeb35b0

  39. "Overview of materials for Magnesium Alloy". MatWeb. Retrieved May 9, 2021. http://www.matweb.com/search/DataSheet.aspx?MatGUID=4e6a4852b14c4b12998acf2f8316c07c

  40. "Medium Density Fiberboard (MDF)". MakeItFrom. May 30, 2020. Retrieved May 8, 2021. http://www.makeitfrom.com/data/?material=MDF

  41. "Molybdenum, Mo, Annealed". MatWeb. Retrieved May 9, 2021. http://www.matweb.com/search/datasheet.aspx?matguid=ef57c33963404798ad0301a05692312a

  42. Weast, Robert C. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. doi:10.1002/jctb.280500215. ISBN 978-0-84-930740-9. 978-0-84-930740-9

  43. Ross, Robert B. (1992). Metallic Materials Specification Handbook (4th ed.). London: Chapman & Hall. doi:10.1007/978-1-4615-3482-2. ISBN 9780412369407. 9780412369407

  44. Nunes, Rafael; Adams, J. H.; Ammons, Mitchell; et al. (1990). Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (PDF). ASM Handbook (10th ed.). ASM International. ISBN 978-0-87170-378-1. 978-0-87170-378-1

  45. Nayar, Alok (1997). The Metals Databook. New York, NY: McGraw-Hill. ISBN 978-0-07-462300-8. 978-0-07-462300-8

  46. Lide, David R., ed. (1999). "Commercial Metals and Alloys". CRC Handbook of Chemistry and Physics (80th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-84-930480-4. 978-0-84-930480-4

  47. Lide, David R., ed. (1999). "Commercial Metals and Alloys". CRC Handbook of Chemistry and Physics (80th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-84-930480-4. 978-0-84-930480-4

  48. Jackson, Andrew P.; Vincent, Julian F. V.; Turner, R. M. (September 22, 1988). "The mechanical design of nacre". Proceedings of the Royal Society B. 234 (1277). Royal Society: 415–440. Bibcode:1988RSPSB.234..415J. doi:10.1098/rspb.1988.0056. eISSN 2053-9193. ISSN 0080-4649. S2CID 135544277 – via The Royal Society Publishing. /wiki/Royal_Society

  49. Lide, David R., ed. (1999). "Commercial Metals and Alloys". CRC Handbook of Chemistry and Physics (80th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-84-930480-4. 978-0-84-930480-4

  50. "Nylon® 6/6 (Polyamide)". Poly-Tech Industrial, Inc. 2011. Retrieved May 9, 2021. https://www.polytechindustrial.com/products/plastic-stock-shapes/nylon-66

  51. Pandey, Dharmendra Kumar; Singh, Devraj; Yadawa, Pramod Kumar (April 2, 2009). "Ultrasonic Study of Osmium and Ruthenium" (PDF). Platinum Metals Review. 53 (4). Johnson Matthey: 91–97. doi:10.1595/147106709X430927. Retrieved May 7, 2021 – via Ingenta Connect. http://www.technology.matthey.com/pdf/91-97-pmr-apr09.pdf

  52. Gaillac, Romain; Coudert, François-Xavier (July 26, 2020). "ELATE: Elastic tensor analysis". ELATE. Retrieved May 9, 2021. http://progs.coudert.name/elate/mp?query=mp-973935

  53. "Polycarbonate". DesignerData. Retrieved May 9, 2021. https://designerdata.nl/materials/plastics/thermo-plastics/polycarbonate

  54. "Overview of materials for Polyethylene Terephthalate (PET), Unreinforced". MatWeb. Retrieved May 9, 2021. http://www.matweb.com/search/DataSheet.aspx?MatGUID=a696bdcdff6f41dd98f8eec3599eaa20

  55. "Overview of Materials for Polypropylene, Molded". MatWeb. Retrieved May 9, 2021. http://www.matweb.com/search/DataSheet.aspx?MatGUID=08fb0f47ef7e454fbf7092517b2264b2

  56. "Young's Modulus: Tensile Elasticity Units, Factors & Material Table". Omnexus. SpecialChem. Retrieved May 9, 2021. https://omnexus.specialchem.com/polymer-properties/properties/young-modulus

  57. "Technical Data – Application Recommendations Dimensioning Aids". Stryodur. BASF. August 2019. Retrieved May 7, 2021. https://www.styrodur.com/portal/streamer?fid=1225078

  58. "Overview of materials for Polytetrafluoroethylene (PTFE), Molded". MatWeb. Retrieved May 9, 2021. http://www.matweb.com/search/datasheet_print.aspx?matguid=4d14eac958e5401a8fd152e1261b6843

  59. Azuri, Ido; Meirzadeh, Elena; Ehre, David; et al. (November 9, 2015). "Unusually Large Young's Moduli of Amino Acid Molecular Crystals" (PDF). Angewandte Chemie. 54 (46) (International ed.). Wiley: 13566–13570. doi:10.1002/anie.201505813. PMID 26373817. S2CID 13717077 – via PubMed. http://www.sas.upenn.edu/rappegroup/publications/Papers/Azuri15p13566.pdf

  60. Boyd, Euan J.; Uttamchandani, Deepak (2012). "Measurement of the Anisotropy of Young's Modulus in Single-Crystal Silicon". Journal of Microelectromechanical Systems. 21 (1). Institute of Electrical and Electronics Engineers: 243–249. doi:10.1109/JMEMS.2011.2174415. eISSN 1941-0158. ISSN 1057-7157. S2CID 39025763 – via IEEE Xplore. /wiki/Journal_of_Microelectromechanical_Systems

  61. "Silicon Carbide (SiC) Properties and Applications". AZO Materials. February 5, 2001. Retrieved May 9, 2021. https://www.azom.com/properties.aspx?ArticleID=42

  62. Forró, László; Salvetat, Jean-Paul; Bonard, Jean-Marc; et al. (January 2002). Thorpe, Michael F.; Tománek, David; Enbody, Richard J. (eds.). "Electronic and Mechanical Properties of Carbon Nanotubes". Science and Application of Nanotubes. Fundamentals Materials Research. Boston, MA: Springer: 297–320. doi:10.1007/0-306-47098-5_22. ISBN 978-0-306-46372-3 – via ResearchGate. 978-0-306-46372-3

  63. Yang, Yi-Hsuan; Li, Wenzhi (January 24, 2011). "Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy". Applied Physics Letters. 98 (4). American Institute of Physics: 041901. Bibcode:2011ApPhL..98d1901Y. doi:10.1063/1.3546170. /wiki/American_Institute_of_Physics

  64. "ASTM A36 Mild/Low Carbon Steel". AZO Materials. July 5, 2012. Retrieved May 9, 2021. https://www.azom.com/article.aspx?ArticleID=6117

  65. Bodros, Edwin; Baley, Christophe (May 15, 2008). "Study of the tensile properties of stinging nettle fibres (Urtica dioica)". Materials Letters. 62 (14): 2143–2145. Bibcode:2008MatL...62.2143B. CiteSeerX 10.1.1.299.6908. doi:10.1016/j.matlet.2007.11.034 – via Elsevier Science Direct. /wiki/Materials_Letters

  66. "Titanium, Ti". MatWeb. Retrieved May 7, 2021. http://www.matweb.com/search/datasheet.aspx?MatGUID=66a15d609a3f4c829cb6ad08f0dafc01

  67. Boyer, Rodney; Welsch, Gerhard; Collings, Edward W., eds. (1994). Materials Properties Handbook: Titanium Alloys. Materials Park, OH: ASM International. ISBN 978-0-87-170481-8. 978-0-87-170481-8

  68. Weast, Robert C. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. doi:10.1002/jctb.280500215. ISBN 978-0-84-930740-9. 978-0-84-930740-9

  69. Nunes, Rafael; Adams, J. H.; Ammons, Mitchell; et al. (1990). Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (PDF). ASM Handbook (10th ed.). ASM International. ISBN 978-0-87170-378-1. 978-0-87170-378-1

  70. Ross, Robert B. (1992). Metallic Materials Specification Handbook (4th ed.). London: Chapman & Hall. doi:10.1007/978-1-4615-3482-2. ISBN 9780412369407. 9780412369407

  71. Lide, David R., ed. (1999). "Commercial Metals and Alloys". CRC Handbook of Chemistry and Physics (80th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-84-930480-4. 978-0-84-930480-4

  72. Nayar, Alok (1997). The Metals Databook. New York, NY: McGraw-Hill. ISBN 978-0-07-462300-8. 978-0-07-462300-8

  73. U.S. Titanium Industry Inc. (July 30, 2002). "Titanium Alloys – Ti6Al4V Grade 5". AZO Materials. Retrieved May 9, 2021. https://www.azom.com/article.aspx?ArticleID=1547

  74. Staines, Michael; Robinson, W. H.; Hood, J. A. A. (September 1981). "Spherical indentation of tooth enamel". Journal of Materials Science. 16 (9). Springer: 2551–2556. Bibcode:1981JMatS..16.2551S. doi:10.1007/bf01113595. S2CID 137704231 – via Springer Link. /wiki/Springer_Publishing

  75. "Tungsten Carbide – An Overview". AZO Materials. January 21, 2002. Retrieved May 9, 2021. https://www.azom.com/properties.aspx?ArticleID=1203

  76. Green, David W.; Winandy, Jerrold E.; Kretschmann, David E. (1999). "Mechanical Properties of Wood". Wood Handbook: Wood as an Engineering Material (PDF). Madison, WI: Forest Products Laboratory. pp. 4–8. Archived from the original (PDF) on July 20, 2018. https://web.archive.org/web/20180720153345/https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/ch04.pdf

  77. Green, David W.; Winandy, Jerrold E.; Kretschmann, David E. (1999). "Mechanical Properties of Wood". Wood Handbook: Wood as an Engineering Material (PDF). Madison, WI: Forest Products Laboratory. pp. 4–8. Archived from the original (PDF) on July 20, 2018. https://web.archive.org/web/20180720153345/https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/ch04.pdf

  78. Green, David W.; Winandy, Jerrold E.; Kretschmann, David E. (1999). "Mechanical Properties of Wood". Wood Handbook: Wood as an Engineering Material (PDF). Madison, WI: Forest Products Laboratory. pp. 4–8. Archived from the original (PDF) on July 20, 2018. https://web.archive.org/web/20180720153345/https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/ch04.pdf

  79. "Wrought Iron – Properties and Applications". AZO Materials. August 13, 2013. Retrieved May 9, 2021. https://www.azom.com/article.aspx?ArticleID=9555

  80. Chou, Hung-Ming; Case, E. D. (November 1988). "Characterization of some mechanical properties of polycrystalline yttrium iron garnet (YIG) by non-destructive methods". Journal of Materials Science Letters. 7 (11): 1217–1220. doi:10.1007/BF00722341. S2CID 135957639 – via SpringerLink. /wiki/Doi_(identifier)

  81. "Yttrium Iron Garnet". Deltronic Crystal Industries, Inc. December 28, 2012. Retrieved May 7, 2021. http://deltroniccrystalindustries.com/deltronic_crystal_products/yttrium_iron_garnet

  82. "An Introduction to Zinc". AZO Materials. July 23, 2001. Retrieved May 9, 2021. https://www.azom.com/properties.aspx?ArticleID=602

  83. Lide, David R., ed. (1999). "Commercial Metals and Alloys". CRC Handbook of Chemistry and Physics (80th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-84-930480-4. 978-0-84-930480-4